Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây đúng?
Nếu a và b cùng vuông góc với c thì a // b
Nếu a // b và c \(\bot\) a thì c \(\bot\) b
Nếu góc giữa a và c bằng góc giữa b và c thì a // b
Nếu a và b cùng nằm trong mặt phẳng $\left( \alpha \right)$ // c thì góc giữa a và c bằng góc giữa b và c
Xét từng trường hợp.
A sai vì: Nếu a và b cùng vuông góc với c thì a và b hoặc song song hoặc chéo nhau hoặc cắt nhau (cùng nằm trong mặt phẳng vuông góc với c).
C sai vì: Giả sử hai đường thẳng a và b chéo nhau, ta dựng đường thẳng c là đường vuông góc chung của a và b. Khi đó góc giữa a và c bằng với góc giữa b và c và cùng bằng \({90^o}\), nhưng hiển nhiên hai đường thẳng a và b không song song.
D sai vì: Giả sử a vuông góc với c, b song song với c, khi đó góc giữa a và c bằng \({90^o}\), còn góc giữa b và c bằng \({0^o}\).
Đáp án : B
Các bài tập cùng chuyên đề
Trong các mệnh đề sau, mệnh đề nào đúng?
Cho tứ diện đều \(ABCD.\) Số đo góc giữa hai đường thẳng \(AB\) và \(CD\) bằng:
Trong các mệnh đề sau đây, mệnh đề nào là đúng?
Cho tứ diện \(ABCD\) có \(AB = AC = AD\) và \(\widehat {BAC} = \widehat {BAD} = 60^\circ \). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \)?
Cho hình chóp \(S.ABC\) có \(SA = SB\) và \(CA = CB\). Tính số đo của góc giữa hai đường thẳng chéo nhau \(SC\) và \(AB.\)
Mệnh đề nào sau đây là đúng?
Cho tứ diện \(ABCD\) có \(AB = CD = a,IJ = \dfrac{{a\sqrt 3 }}{2}\) (\(I\), \(J\) lần lượt là trung điểm của \(BC\) và \(AD\)). Số đo góc giữa hai đường thẳng \(AB\) và \(CD\) là
Cho hình hộp \(ABCD.A'B'C'D'\). Giả sử tam giác \(AB'C\) và \(A'DC'\) đều có 3 góc nhọn. Góc giữa hai đường thẳng \(AC\) và \(A'D\) là góc nào sau đây?
Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {DH} \)?
Trong không gian cho hai hình vuông $ABCD$ và $ABC'D'$ có chung cạnh $AB$ và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm $O$ và $O'$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và $\overrightarrow {OO'} $?
Cho tứ diện $ABCD$ có $AB = AC = AD$ và \(\widehat {BAC} = \widehat {BAD} = {60^0}\). Gọi $I$ và $J$ lần lượt là trung điểm của $AB$ và $CD$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {IJ} \) và \(\overrightarrow {CD} \)?
Cho tứ diện \(ABCD\) có \(AC = \dfrac{3}{2}AD\), \(\widehat {CAB} = \widehat {DAB} = 60^\circ \), \(CD = AD\). Gọi \(\varphi \) là góc giữa \(AB\) và \(CD\). Chọn khẳng định đúng?
Cho tứ diện $ABCD$ có trọng tâm $G$. Chọn khẳng định đúng?
Cho hình chóp $S.ABCD$ có đáy là hình vuông $ABCD$ cạnh bằng $a$ và các cạnh bên đều bằng $a$. Gọi $M$ và $N$ lần lượt là trung điểm của $AD$ và $SD$. Số đo của góc $\left( {MN,SC} \right)$ bằng:
Cho hình lập phương \(ABCD.A'B'C'D'\). Chọn khẳng định sai?
Cho \(\left| {\overrightarrow a } \right| = 3,\left| {\overrightarrow b } \right| = 5\), góc giữa \(\overrightarrow a \) và \(\overrightarrow b \) bằng $120^\circ $. Chọn khẳng định sai trong các khẳng định sau?
Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \)?
Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai?
Cho tứ diện $ABCD$ có $AB$ vuông góc với $CD$. Mặt phẳng $\left( P \right)$ song song với $AB$ và $CD$ lần lượt cắt $BC,{\rm{ }}DB,{\rm{ }}AD,{\rm{ }}AC$ tại $M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q$. Tứ giác $MNPQ$ là hình gì?
Cho tứ diện \(ABCD\) có \(AB\) vuông góc với \(CD\), \(AB = CD = 6\). \(M\) là điểm thuộc cạnh \(BC\) sao cho \(MC = x.BC{\rm{ }}\left( {0 < x < 1} \right)\). Mặt phẳng\(\left( P \right)\) song song với \(AB\) và \(CD\) lần lượt cắt \(BC,DB,AD,AC\) tại \(M,N,P,Q\). Diện tích lớn nhất của tứ giác bằng bao nhiêu?