Đề bài

Hàm số \(y = {\tan ^2}\dfrac{x}{2}\) có đạo hàm là:

  • A.

    \(y' = \dfrac{{\sin \dfrac{x}{2}}}{{2{{\cos }^3}\dfrac{x}{2}}}\) 

  • B.

    \(y' = {\tan ^3}\dfrac{x}{2}\)             

  • C.

    \(y' = \dfrac{{\sin \dfrac{x}{2}}}{{co{s^3}\dfrac{x}{2}}}\) 

  • D.

    \(y' = \dfrac{{2\sin \dfrac{x}{2}}}{{{{\cos }^3}\dfrac{x}{2}}}\) 

Phương pháp giải

Cách 1: 

Bước 1: Sử dụng công thức đạo hàm của hàm hợp $(u^n)'=n.u'.u^n-1$.

Bước 2: Sử dụng công thức đạo hàm của hàm $(\tan u)'=\dfrac{u'}{\cos^2 u}$

Cách 2:

\({\tan ^2}\dfrac{x}{2} = \dfrac{{{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}\), sử dụng các công thức hạ bậc, sau đó áp dụng quy tắc tính đạo hàm của 1 thương: \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - uv'}}{{{v^2}}}\)

Lời giải của GV xemloigiai.com

Bước 1:

$\begin{array}{l}
\left( {{{\tan }^2}\dfrac{x}{2}} \right)' = 2\tan \dfrac{x}{2}\left( {\tan \dfrac{x}{2}} \right)'\\
 \end{array}$

Bước 2:

$= 2\tan \dfrac{x}{2}.\dfrac{{\left( {\dfrac{x}{2}} \right)'}}{{{{\cos }^2}\dfrac{x}{2}}}$

$= 2\tan \dfrac{x}{2}.\dfrac{\dfrac{1}{2}}{{{{\cos }^2}\dfrac{x}{2}}}\\
= \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}.\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}} = \dfrac{{\sin \dfrac{x}{2}}}{{{{\cos }^3}\dfrac{x}{2}}}$

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Tính đạo hàm của hàm số sau: \(y = {x^4} - 3{x^2} + 2x - 1\)

Xem lời giải >>
Bài 2 :

Tính đạo hàm của hàm số sau \(y = \dfrac{{2x + 1}}{{x + 2}}\)

Xem lời giải >>
Bài 3 :

Cho hàm số \(f\left( x \right) = \sqrt[3]{x}\). Giá trị của \(f'\left( 8 \right)\) bằng:

Xem lời giải >>
Bài 4 :

Cho hàm số \(y = \dfrac{3}{{1 - x}}\). Để \(y' < 0\) thì $x$ nhận các giá trị thuộc tập nào sau đây?

Xem lời giải >>
Bài 5 :

Hàm số nào sau đây có \(y' = 2x + \dfrac{1}{{{x^2}}}\)?

Xem lời giải >>
Bài 6 :

Đạo hàm của hàm số \(y = \dfrac{1}{{{x^3}}} - \dfrac{1}{{{x^2}}}\) là

Xem lời giải >>
Bài 7 :

Đạo hàm của hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\,\,\left( {ac \ne 0} \right)\) là:

Xem lời giải >>
Bài 8 :

Tính đạo hàm của hàm số \(y = \dfrac{{{x^2} - x + 1}}{{x - 1}}\) ta được:

Xem lời giải >>
Bài 9 :

Tính đạo hàm của hàm số \(y = {\left( {{x^7} + x} \right)^2}\)

Xem lời giải >>
Bài 10 :

Đạo hàm của hàm số \(y = \dfrac{1}{{x\sqrt x }}\) là:

Xem lời giải >>
Bài 11 :

Đạo hàm của hàm số \(y = \sin 2x\) là:

Xem lời giải >>
Bài 12 :

Cho hàm số \(y = \dfrac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}\). Đạo hàm y’ của hàm số là:

Xem lời giải >>
Bài 13 :

Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 1\). Đạo hàm của hàm số f(x) âm khi và chỉ khi

Xem lời giải >>
Bài 14 :

Cho hàm số \(f\left( x \right) = {\left( {\sqrt x  - \dfrac{1}{{\sqrt x }}} \right)^3}\). Hàm số có đạo hàm \(f'\left( x \right)\) bằng:

Xem lời giải >>
Bài 15 :

Đạo hàm của hàm số \(y = {\tan ^2}x - co{t^2}x\) là:

Xem lời giải >>
Bài 16 :

Cho hàm số \(f\left( x \right) = \tan \left( {x - \dfrac{{2\pi }}{3}} \right)\). Giá trị \(f'\left( 0 \right)\) bằng:

Xem lời giải >>
Bài 17 :

Đạo hàm của hàm số \(y = x\left( {2x - 1} \right)\left( {3x + 2} \right)\left( {\sin x - \cos x} \right)'\) là:

Xem lời giải >>
Bài 18 :

Tính đạo hàm của hàm số sau: \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 3x + 1\,\,\,\,khi\,\,x > 1\\2x + 2\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \le 1\end{array} \right.\) ta được:

Xem lời giải >>
Bài 19 :

Tìm $m$ để hàm số \(y = \dfrac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\) có \(y' \le 0\,\,\forall x \in R\)

Xem lời giải >>
Bài 20 :

Giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x - \sin 3x}}{x}\) bằng :

Xem lời giải >>