Đạo hàm của hàm số \(y = {\tan ^2}x - co{t^2}x\) là:
\(y' = 2\dfrac{{\tan x}}{{{{\cos }^2}x}} + 2\dfrac{{\cot x}}{{{{\sin }^2}x}}\)
\(y' = 2\dfrac{{\tan x}}{{{{\cos }^2}x}} - 2\dfrac{{\cot x}}{{{{\sin }^2}x}}\)
\(y' = 2\dfrac{{\tan x}}{{{{\sin }^2}x}} + 2\dfrac{{\cot x}}{{{{\cos }^2}x}}\)
\(y' = 2\tan x - 2\cot x\)
Sử dụng hằng đẳng thức \({a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\), sau đó áp dụng quy tắc tính đạo hàm của 1 tích: \(\left( {uv} \right)' = u'v + uv'\)
$\begin{array}{l}y = {\tan ^2}x - co{t^2}x = \left( {\tan x - \cot x} \right)\left( {\tan x + \cot x} \right)\\y' = \left( {\tan x - \cot x} \right)'\left( {\tan x + \cot x} \right) + \left( {\tan x - \cot x} \right)\left( {\tan x + \cot x} \right)'\\y' = \left( {\dfrac{1}{{{{\cos }^2}x}} + \dfrac{1}{{{{\sin }^2}x}}} \right)\left( {\tan x + \cot x} \right) + \left( {\tan x - \cot x} \right)\left( {\dfrac{1}{{{{\cos }^2}x}} - \dfrac{1}{{{{\sin }^2}x}}} \right)\\y' = \dfrac{{\tan x}}{{{{\cos }^2}x}} + \dfrac{{\cot x}}{{{{\cos }^2}x}} + \dfrac{{\tan x}}{{{{\sin }^2}x}} + \dfrac{{\cot x}}{{{{\sin }^2}x}} + \dfrac{{\tan x}}{{{{\cos }^2}x}} - \dfrac{{\tan x}}{{{{\sin }^2}x}} - \dfrac{{\cot x}}{{{{\cos }^2}x}} + \dfrac{{\cot x}}{{{{\sin }^2}x}}\\y' = 2\dfrac{{\tan x}}{{{{\cos }^2}x}} + 2\dfrac{{\cot x}}{{{{\sin }^2}x}}\end{array}$
Đáp án : A
Các bài tập cùng chuyên đề
Tính đạo hàm của hàm số sau: \(y = {x^4} - 3{x^2} + 2x - 1\)
Tính đạo hàm của hàm số sau \(y = \dfrac{{2x + 1}}{{x + 2}}\)
Cho hàm số \(f\left( x \right) = \sqrt[3]{x}\). Giá trị của \(f'\left( 8 \right)\) bằng:
Cho hàm số \(y = \dfrac{3}{{1 - x}}\). Để \(y' < 0\) thì $x$ nhận các giá trị thuộc tập nào sau đây?
Hàm số nào sau đây có \(y' = 2x + \dfrac{1}{{{x^2}}}\)?
Đạo hàm của hàm số \(y = \dfrac{1}{{{x^3}}} - \dfrac{1}{{{x^2}}}\) là
Đạo hàm của hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\,\,\left( {ac \ne 0} \right)\) là:
Tính đạo hàm của hàm số \(y = \dfrac{{{x^2} - x + 1}}{{x - 1}}\) ta được:
Tính đạo hàm của hàm số \(y = {\left( {{x^7} + x} \right)^2}\)
Đạo hàm của hàm số \(y = \dfrac{1}{{x\sqrt x }}\) là:
Đạo hàm của hàm số \(y = \sin 2x\) là:
Cho hàm số \(y = \dfrac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}\). Đạo hàm y’ của hàm số là:
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 1\). Đạo hàm của hàm số f(x) âm khi và chỉ khi
Cho hàm số \(f\left( x \right) = {\left( {\sqrt x - \dfrac{1}{{\sqrt x }}} \right)^3}\). Hàm số có đạo hàm \(f'\left( x \right)\) bằng:
Cho hàm số \(f\left( x \right) = \tan \left( {x - \dfrac{{2\pi }}{3}} \right)\). Giá trị \(f'\left( 0 \right)\) bằng:
Hàm số \(y = {\tan ^2}\dfrac{x}{2}\) có đạo hàm là:
Đạo hàm của hàm số \(y = x\left( {2x - 1} \right)\left( {3x + 2} \right)\left( {\sin x - \cos x} \right)'\) là:
Tính đạo hàm của hàm số sau: \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 3x + 1\,\,\,\,khi\,\,x > 1\\2x + 2\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \le 1\end{array} \right.\) ta được:
Tìm $m$ để hàm số \(y = \dfrac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\) có \(y' \le 0\,\,\forall x \in R\)
Giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x - \sin 3x}}{x}\) bằng :