Đề bài

Xét hai mệnh đề:

(I) $f(x)$ có đạo hàm tại $x_0$ thì $f(x)$ liên tục tại $x_0$.

(II) $f(x)$ liên tục tại $x_0$ thì $f(x)$ có đạo hàm tại $x_0$.

Mệnh đề nào đúng?

  • A.

    Chỉ (I) 

  • B.

    Chỉ (II)

  • C.

    Cả hai đều sai

  • D.

    Cả 2 đều đúng

Phương pháp giải

Suy luận từ công thức tính đạo hàm của hàm số tại một điểm bằng định nghĩa.

Lời giải của GV xemloigiai.com

(I) hiển nhiên đúng.

(II) sai.

Ví dụ: Xét hàm số \(f\left( x \right) = \left| x \right|\) ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} = \left| {{x_0}} \right| = f\left( {{x_0}} \right) \Rightarrow \) Hàm số liên tục tại trên $R.$ Tuy nhiên hàm số không có đạo hàm tại $x = 0$.

$\begin{array}{l}f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left| x \right|}}{x}\\\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\left| x \right|}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{x}{x} = 1\\\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\left| x \right|}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{ - x}}{x} = - 1\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\left| x \right|}}{x} \ne \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\left| x \right|}}{x}.\end{array}$

Không tồn tại đạo hàm của hàm số tại $x = 0$.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho hàm số \(f\left( x \right) = \sqrt {x + 1} \). Tính đạo hàm của hàm số tại điểm \({x_0} = 1\)

Xem lời giải >>
Bài 2 :

Khi tính đạo hàm của hàm số \(f\left( x \right) = {x^2} + 5x - 3\) tại điểm \({x_0} = 2\), một học sinh đã tính theo các bước sau:

Bước 1: \(f\left( x \right) - f\left( 2 \right) = f\left( x \right) - 11\)

Bước 2: \(\dfrac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}} = \dfrac{{{x^2} + 5x - 3 - 11}}{{x - 2}} = \dfrac{{\left( {x - 2} \right)\left( {x + 7} \right)}}{{x - 2}} = x + 7\)

Bước 3: \(\mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 7} \right) = 9 \Rightarrow f'\left( 2 \right) = 9\)

Tính toán trên nếu sai thì sai ở bước nào?

Xem lời giải >>
Bài 3 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3 - \sqrt {4 - x} \,\,\,khi\,\,x \ne 0\\1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) . Khi đó \(f'\left( 0 \right)\) là kết quả nào sau đây?

Xem lời giải >>
Bài 4 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\sqrt x \,\,\,khi\,\,x > 1\\{x^2}\,\,\,\,\,khi\,\,x \le 1\end{array} \right.\). Tính \(f'\left( 1 \right)\) ?

Xem lời giải >>
Bài 5 :

Tính tỷ số \(\dfrac{{\Delta y}}{{\Delta x}}\) của hàm số \(y = 2{x^3}\) theo \(x\) và \(\Delta x.\)

Xem lời giải >>
Bài 6 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 1\\\dfrac{{{x^3} + 2{x^2} - 7x + 4}}{{x - 1}}\,\,khi\,\,x < 1\end{array} \right.\). Giá trị của \(f'\left( 1 \right)\) bằng:

Xem lời giải >>
Bài 7 :

Cho hàm số \(y = f\left( x \right)\) xác định: \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}\,\,khi\,\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Giá trị của \(f'\left( 0 \right)\) bằng:

Xem lời giải >>
Bài 8 :

Xét hai hàm số: \(\left( I \right):f\left( x \right) = \left| x \right|x,\,\,\left( {II} \right):g\left( x \right) = \sqrt x \) . Hàm số có đạo hàm tại $x = 0$ là:

Xem lời giải >>
Bài 9 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{4{x^2} + 8}} - \sqrt {8{x^2} + 4} }}{x}\,\,\,khi\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 0\end{array} \right.\). Giá trị của \(f'\left( 0 \right)\) bằng:

Xem lời giải >>
Bài 10 :

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ. Mệnh đề nào sau đây sai?

Xem lời giải >>
Bài 11 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}\,\,\,khi\,\,x \ne 1\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\). Giá trị của \(f'\left( 1 \right)\) bằng:

Xem lời giải >>
Bài 12 :

Cho hàm số \(f\left( x \right) = \dfrac{{{x^2} + \left| {x + 1} \right|}}{x}\). Tính đạo hàm của hàm số tại \({x_0} =  - 1\).

Xem lời giải >>
Bài 13 :

Xét hai câu sau:

(1) Hàm số \(y = \dfrac{{\left| x \right|}}{{x + 1}}\) liên tục tại $x = 0.$

(2) Hàm số \(y = \dfrac{{\left| x \right|}}{{x + 1}}\) có đạo hàm tại $x = 0.$

Trong 2 câu trên:

Xem lời giải >>
Bài 14 :

Tìm $a$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}}\,\,khi\,\,x \ne 1\\a\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\) có đạo hàm tại $x = 1.$

Xem lời giải >>
Bài 15 :

Tìm $a, b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} + 1}}{{x + 1}}\,\,khi\,\,x \ge 0\\ax + b\,\,khi\,\,x < 0\end{array} \right.\)  có đạo hàm tại điểm $x = 0.$

Xem lời giải >>
Bài 16 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}a{x^2} + bx\,\,khi\,\,x \ge 1\\2x - 1\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\). Tìm $a, b$ để hàm số có đạo hàm tại $x = 1.$

Xem lời giải >>
Bài 17 :

Với hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x\sin \dfrac{\pi }{x}\,\,khi\,\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) . Để tìm đạo hàm \(f'\left( 0 \right)\) một học sinh lập luận qua các bước sau:

Bước 1: \(\left| {f\left( x \right)} \right| = \left| x \right|\left| {\sin \dfrac{\pi }{x}} \right| \le \left| x \right|\)

Bước 2: Khi \(x \to 0\) thì \(\left| x \right| \to 0\)  nên \(\left| {f\left( x \right)} \right| \to 0 \Rightarrow f\left( x \right) \to 0\)

Bước 3: Do \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) = 0\)  nên hàm số liên tục tại $x = 0.$

Bước 4: Từ $f(x)$ liên tục tại \(x = 0 \Rightarrow f\left( x \right)\) có đạo hàm tại $x = 0.$

Lập luận trên nếu sai thì bắt đầu từ bước nào?

Xem lời giải >>
Bài 18 :

Cho hàm số \(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 1000} \right)\). Tính \(f'\left( 0 \right)\) ?

Xem lời giải >>
Bài 19 :

Tìm $a, b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}a{x^2} + bx + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 0\\a\sin x + b\cos x\,\,\,\,khi\,\,x < 0\end{array} \right.\)  có đạo hàm tại điểm \({x_0} = 0\).

Xem lời giải >>