Có hai dãy ghế đối diện nhau, mỗi dãy có ba ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng:
\(\dfrac{2}{5}\)
\(\dfrac{1}{{20}}\)
\(\dfrac{3}{5}\)
\(\dfrac{1}{{10}}\)
+) Tính số phần tử của không gian mẫu.
+) Tính số phần tử của biến cố.
Chọn chỗ cho từng học sinh nam, sau đó chọn chỗ cho học sinh nữ, sử dụng quy tắc nhân.
+) Tính xác suất của biến cố.
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 6!\).
Gọi biến cố A : "Các bạn học sinh nam ngồi đối diện các bạn nữ".
Chọn chỗ cho học sinh nam thứ nhất có 6 cách.
Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất).
Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).
Xếp chỗ cho 3 học sinh nữ: 3! cách.
\( \Rightarrow {n_A} = 6.4.2.3! = 288\) cách.
\( \Rightarrow P\left( A \right) = \dfrac{{288}}{{6!}} = \dfrac{2}{5}\).
Đáp án : A
Các bài tập cùng chuyên đề
Trong các thí nghiệm sau, thí nghiệm nào không phải là phép thử ngẫu nhiên?
Không gian mẫu khi gieo hai đồng xu là:
Gieo hai con xúc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con xúc xắc bằng 7 là:
Gieo hai con xúc sắc và gọi kết quả xảy ra là tích của số chấm xuất hiện ở mỗi xúc sắc . Số phần tử của không gian mẫu là:
Gieo một con xúc sắc hai lần. Biến cố \(A\) là biến cố để hai lần gieo có ít nhất một mặt \(6\) chấm. Các phần tử của \({\Omega _A}\) là:
Gieo đồng xu hai lần liên tiếp. Biến cố \(A\) là biến cố “Mặt ngửa xuất hiện đúng 1 lần”. Số phần tử của \({\Omega _A}\) là:
Cho phép thử có không gian mẫu \(\Omega = \left\{ {1;2;3;4;5;6} \right\}\). Cặp biến cố không đối nhau là:
Gieo một đồng xu 5 lần liên tiếp. Số phần tử của không gian mẫu là:
Một tổ học sinh có \(7\) nam và \(3\) nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.
Cho \(A\) là một biến cố liên quan phép thử \(T\). Xác suất xảy ra biến cố \(A\) là:
Gieo hai con súc sắc. Xác suất để tổng hai mặt bằng \(11\) là.
Gieo đồng xu hai lần liên tiếp. Xác suất để sau hai lần gieo thì mặt ngửa xuất hiện ít nhất một lần.
Gieo đồng xu cân đối và đồng chất \(5\) lần liên tiếp. Xác suất để được ít nhất một lần xuất hiện mặt sấp là:
Gieo ngẫu nhiên bốn đồng xu cân đối và đồng chất. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là:
Gieo ba đồng xu cân đối, đồng chất. Xác suất để ba đồng xu ra cùng một mặt là:
Gieo ba đồng xu cân đối, đồng chất. Xác suất để có đúng hai đồng xu xuất hiện mặt sấp là:
Gieo một con xúc sắc cân đối và đồng chất \(5\) lần liên tiếp. Tính xác suất để tổng số chấm ở hai lần gieo đầu bằng số chấm ở lần gieo thứ ba.
Gieo ba con xúc sắc cân đối, đồng chất. Xác suất để số chấm xuất hiện trên ba con xúc sắc đó bằng nhau là:
Một con xúc sắc cân đối, đồng chất được gieo \(6\) lần. Xác suất để được một số lớn hơn hay bằng \(5\) xuất hiện ít nhất \(5\) lần là:
Có 5 nam, 5 nữ xếp thành một hàng dọc. Tính xác suất để nam, nữ đứng xen kẽ nhau.