Vẽ đồ thị mỗi hàm số bậc hai sau:
a) \(y = {x^2} - 4x - 3\)
b) \(y = {x^2} + 2x + 1\)
c) \(y = - {x^2} - 2\)
Bước 1: Xác định tọa độ đỉnh \(\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\)
Bước 2: Vẽ trục đối xứng \(x = - \frac{b}{{2a}}\)
Bước 3: Xác định một số điểm đặc biệt, chẳng hạn giao điểm với trục tung (0;c) và trục hoành (nếu có), điểm đối xứng với điểm (0;c) qua trục \(x = - \frac{b}{{2a}}\).
Bước 4: Vẽ đường parabol đi qua các điểm đã xác định ta nhận được đồ thị hàm số \(y = a{x^2} + bx + c\).
a) Đồ thị hàm số có đỉnh \(I\left( {2; - 7} \right)\)
Trục đối xứng là x=2
Giao điểm của parabol với trục tung là (0;-3)
Điểm đối xứng với điểm (0;-3) qua trục đối xứng x=2 là (4;-3)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
b) Đồ thị hàm số có đỉnh \(I\left( { - 1;0} \right)\)
Trục đối xứng là x=-1
Giao điểm của parabol với trục tung là (0;1)
Giao điểm của parabol với trục hoành là (-1;0)
Điểm đối xứng với điểm (0;1) qua trục đối xứng x=-1 là (-2;1)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
c) Đồ thị hàm số có đỉnh \(I\left( {0; - 2} \right)\)
Trục đối xứng là x=0
Giao điểm của parabol với trục tung là (0;-2)
Cho x=1=>y=-3
=> Điểm A(1;-3) thuộc đồ thị.
Điểm đối xứng với A qua trục đối xứng x=0 là điểm B(-1;-3).
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
Các bài tập cùng chuyên đề
Đỉnh I của parabol (P): \(y = –3x^2+ 6x – 1\) là:
Nếu hàm số $y = a{x^2} + bx + c$ có $a < 0,b > 0$ và $c > 0$ thì đồ thị của nó có dạng:
Đỉnh của parabol \(\left( P \right):y = 3{x^2} - 2x + 1\) là
Hàm số nào sau đây có đồ thị là parabol có đỉnh \(I\left( { - 1;3} \right)\)?
Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình bên.
Khẳng định nào sau đây đúng ?
Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình bên.
Khẳng định nào sau đây đúng ?
Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình bên. Khẳng định nào sau đây đúng ?
Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình bên. Khẳng định nào sau đây đúng ?
Tọa độ đỉnh của parabol \(\left( P \right):\,\,y = - {x^2} + 2x - 3\) là:
Cho parabol \(\left( P \right):y = {x^2} - 4x + 1.\) Tọa độ đỉnh \(I\) của parabol \(\left( P \right)\) là
Tìm tọa độ đỉnh của parabol \(y = 2{x^2} + x + 2\)
Cho hàm số \(y = - {x^2} + 2x + 3\).
a) Tìm tọa độ 5 điểm thuộc đồ thị hàm số trên có hoành độ lần lượt là \( - 1,0,1,2,3\) rồi vẽ chúng trong mặt phẳng tọa độ Oxy.
b) Vẽ đường cong đi qua 5 điểm trên. Đường cong đó cũng là đường parabol và là đồ thị của hàm số \(y = - {x^2} + 2x + 3\) (Hình 12).
c) Cho biết tọa độ của điểm cao nhất và phương trình trục đối xứng của parabol đó. Đồ thị hàm số đó quay bề lõm lên trên hay xuống dưới?
Cho hàm số \(y = {x^2} + 2x - 3\).
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
b) Vẽ các điểm \(A\left( { - 3;0} \right),B\left( { - 2; - 3} \right),C\left( { - 1; - 4} \right),\)\(D\left( {0; - 3} \right),E\left( {1;0} \right)\) của đồ thị hàm số \(y = {x^2} + 2x - 3\) trong mặt phẳng tọa độ Oxy.
c) Vẽ đường cong đi qua 5 điểm A, B, C, D, E. Đường cong đó là đường parabol và cũng chính là đồ thị hàm số \(y = {x^2} + 2x - 3\) (Hình 11).
d) Cho biết tọa độ của điểm thấp nhất và phương trình trục đối xứng của parabol đó. Đồ thị hàm số đó quay bề lõm lên trên hay xuống dưới?
Xác định parabol \(y = a{x^2} + bx + 4\) trong mỗi trường hợp sau:
a) Đi qua điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\)
b) Có đỉnh là \(I\left( { - 3; - 5} \right)\)
Vẽ đồ thị của mỗi hàm số sau:
a) \(y = 2{x^2} - 6x + 4\)
b) \(y = - 3{x^2} - 6x - 3\)
Cho hàm số \(y = - 2{x^2}\).
a) Điểm nào trong các điểm có tọa độ \(\left( { - 1; - 2} \right),\left( {0;0} \right),\left( {0;1} \right),\left( {2021;1} \right)\) thuộc đồ thị của hàm số trên?
b) Tìm những điểm thuộc đồ thị hàm số có hoành độ lần lượt bằng \( - 2;3\) và 10.
c) Tìm những điểm thuộc đồ thị hàm số có tung độ bằng \( - 18\).
Quan sát đồ thị hàm số bậc hai \(y = a{x^2} + bx + c\) ở Hình 37a và Hình 37b rồi nêu:
a) Dấu của hệ số a;
b) Toạ độ đỉnh và trục đối xứng;
c) Khoảng đồng biến;
d) Khoảng nghịch biến;
e) Khoảng giá trị x mà y > 0;
g) Khoảng giá trị x mà \(y \le 0\).
Vẽ đồ thị của mỗi hàm số sau:
a) \(y = {x^2} - 3x - 4\)
b) \(y = {x^2} + 4x + 4\)
c) \(y = - {x^2} + 2x - 2\)
Vẽ đồ thị hàm số \(y = {x^2} - 4x + 3\) rồi so sánh đồ thị hàm số này với đồ thị hàm số trong Ví dụ 2z. Nếu nhận xét về hai đồ thị này.
a) Xét hàm số\(y = f(x) = {x^2} - 8x + 19 = {(x - 4)^2} + 3\) có bảng giá trị:
\(x\) | 2 | 3 | 4 | 5 | 6 |
\(f(x)\) | 7 | 4 | 3 | 4 | 7 |
Trên mặt phẳng tọa độ, ta có các điểm \((x;f(x))\) với x thuộc bảng giá trị đã cho (hình 1).
Hãy vẽ đường cong đi qua các điểm A, B, S, C, D và nêu nhận xét về hình dạng của đường cong này so với đồ thị hàm số \(y = {x^2}\) trên Hình 1.
b) Tương tự xét hàm số \(y = g(x) = - {x^2} + 8x - 13 = - {(x - 4)^2} + 3\) có bảng giá trị:
\(x\) | 2 | 3 | 4 | 5 | 6 |
\(f(x)\) | -1 | 2 | 3 | 2 | -1 |
Trên mặt phẳng tọa độ, ta có các điểm \((x;f(x))\) với x thuộc bảng giá trị đã cho (hình 2).
Hãy vẽ đường cong đi qua các điểm A, B, S, C, D và nêu nhận xét về hình dạng của đường cong này so với đồ thị hàm số \(y = - {x^2}\) trên Hình 2.
d) \(y = 2{x^2} - 5\)
c) \(y = - 3{x^2} + 6x\)
b) \(y = - {x^2} + 2x + 3\)
a) \(y = 2{x^2} + 4x - 1\)
Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
\(\begin{array}{l}({P_1}):y = - 2{x^2} - 4x + 2;\\({P_2}):y = 3{x^2} - 6x + 5;\\({P_3}):y = 4{x^2} - 8x + 7;\\({P_4}):y = - 3{x^2} - 6x - 1.\end{array}\)
Tìm công thức của hàm số bậc hai có đồ thị như Hình 13.
d) \(y = - {x^2} - 2x - 1\)
c) \(y = {x^2} - 4x + 5\)
b) \(y = - {x^2} - 4x + 5\)
a) \(y = {x^2} - 4x + 3\)